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a  b  s  t  r  a  c  t

The  membrane  or cross-flow  velocity  in asymmetric  Flow  Field-Flow  fractionation  is  not  constant  in
usual  geometries.  Previously  theoretical  models  however  were  developed  with  the  hypothesis  of  a  con-
stant membrane  velocity.  The  argument  about  peak  broadening  in the comments  of K.-G.  Wahlund  (J.
Chromatogr.  A  1218  (2011)  6848)  is  based  on  this  kind  of model.  Such  an  assumption  was  not  included
in  the  recently  proposed  model  used  to  determine  the  conditions  of constant  velocities.  The  model  goes
beyond  this  approximation  and anyway  can  provide  the  two  velocity  fields  in various  geometries.
eywords:
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onstant separation efficiency
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. Introduction

The two recent papers [1,2] analyzing the conditions to obtain
onstant channel and crossflow velocities in asymmetric Flow
ield-Flow fractionation were aimed to go beyond the simple idea
hat such result could be obtained only by decreasing the chan-
el breadth. It was demonstrated that, according to the model, the
xponential breadth variation was a necessary condition, but more-
ver it has to be associated with variation of membrane resistance
r permeate channel height as a function of distance. The core of the
apers was the model developed to provide the field of pressure in
he channels as a function of distance. Contrary to the affirmation
n [3]: “Both designs lead to almost, but not perfectly [1],  uni-
orm channel flow velocity and crossflow velocity”, both designs
ead to perfectly constant velocities, of course according to the
hosen model. It was also suggested in [1] that the constant separa-
ion efficiency “might contribute reducing the presently observed
eak broadening”, a point which is criticized in [3] and presented
rongly as the main claim. In those two papers indeed, we  did not
nalyze the band broadening as it is dependent on many parame-
ers. At least however, as far as the aim of experimentalists was  to
et a constant channel velocity to compare with other conditions,

∗ Tel.: +33 467149121; fax: +33 467149119.
E-mail address: dejardin@iemm.univ-montp2.fr

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.12.067
it seemed useful to propose the conditions of an experimental
setup where the claimed condition of constant velocity would be
really satisfied. We will comment below the analysis about peak
broadening in [3] after recalling some background about theoretical
models.

2. Background

In a hydraulic (electric) circuit with derivations, one cannot
determine the local flow rates (currents or current densities) with-
out any knowledge of the hydraulic (electric) resistances. The
model developed in [1,2] was  precisely used to determine if there
existed a combination of resistances allowing constant velocities;
and if yes, what was  this combination.

It was recalled in [3]:  “It has been shown that a constant mean
channel flow velocity may  be obtained in asymmetrical FlFFF with
a channel of exponential geometry and with suitable volumetric
flow rates at inlet and outlet [4]”. The model developed in [1,2]
leads to a result somewhat different as, in addition, the membrane
resistance or permeate channel section is a function of distance to
entrance. The difference between both approaches originates from
the absence of the assumption of constant cross-flow or membrane

velocity in the recent model, whereas it is assumed to be constant
in [4] for the three channel geometries (rectangular, trapezoidal
and exponential) and in [5] for the analysis of zone broadening
with rectangular and trapezoidal geometries. Formally, with the

dx.doi.org/10.1016/j.chroma.2011.12.067
http://www.sciencedirect.com/science/journal/00219673
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xial flow in the z direction, the new model treats differently the
ondition:

qc(z) + qm(z) = 0 (1)

here qc(z) is the flow rate in the sample channel at distance z from
he entrance, and qm(z) is the cross flow rate through the membrane
+support) at position z, with the convention of being positive when
he flow occurs from sample channel to permeate compartment.

 positive flow rate through the membrane is associated with a
egative variation dqc(z). For a sample channel of height w1 and
onstant breadth, the mean axial velocity vc(z) in the channel and
he velocity through the membrane vm(z) at distance z, are then
inked by the relation:

m(z) = −w1
dvc

dz
(2)

In previous works [4–7], the membrane velocity was always
ssumed to be constant over the channel length L, thus for a channel
f constant breadth:

m = −w1
dvc

dz
= −w1

vc(z) − vc(0)
z

=  −w1
vc(L) − vc(0)

L
(3)

Let �1 and �2 be the characteristic lengths of the membrane
+support)/channel assembly for the sample and permeate chan-
els respectively [2].  Index 1 is relative to the sample channel,

ndex 2 to the permeate channel. We  consider a membrane of con-
tant characteristics over the length of the channels. Entrance of the
hannels is positioned at z = 0, exit at z = L. Let us use the dimension-
ess variables Z = z/L and L∗

i
= L/�i. Pi(Z) is the pressure difference

etween the pressure at position Z and a reference like the atmo-
pheric pressure P0 for instance. We  have for channels of constant
readth and height (from Eqs. (10)–(11) in [2] with s = 0 and the
atio W2 = w2/w1 of the two heights constant):

d2P1

dz2
− L∗2

1 (P1 − P2) = 0 (4a)

d2P2

dZ2
+ L∗2

2 (P1 − P2) = 0 (4b)

The difference of the two equations lead directly to the dif-
erential equation for the pressure difference �P(Z) = P1(Z) − P2(Z)
etween both channels which is proportional to the membrane
elocity vm(z):

d2�P

dZ2
− (L∗2

1 + L∗2
2 )�P = 0 (4c)

It is clear that the solution of Eq. (4c) is not �P(Z) = Constant. If
he breadth b(Z) is not constant and the same in both channels, we
rrive at the same conclusion from the equation:

d2�P

dZ2
+ 1

b

(
db

dZ

)
d�P

dZ
− (L∗2

1 + L∗2
2 )�P = 0 (5)

nd to different solutions depending of the function b(z). As a sum-
ary, the membrane velocity is not constant over the length of the

ell. It can be evaluated as well as the sample channel velocity by the
nalytical solutions of the preceding equations with the appropri-
te boundary conditions. Recently, the method was applied to the
nalysis of the void-time determination [8] for a classical rectangu-
ar channel: taking into account the resistances, it is clear that the
ross-flow velocity is not constant over the cell length, even if the
ean value is null. It presents a “reversal point”: before that point,

he cross-flow occurs from sample channel to the permeate or

eservoir compartment, whereas after that point it occurs from the
eservoir compartment to the sample channel. It is expected that
he reversal point moves when allowing a fraction of the entrance
ow rate to flow out via the permeate compartment exit.
 1225 (2012) 193– 195

This model allows the description of various conditions which
may  occur in experiments for instance when programming the exit
flow rates. As stated in [5] “a good theoretical description is impor-
tant for the optimizations of the separation conditions”. The mean
velocity of the fluid in the sample channel vc(z) and the velocity
through the membrane vm(z) are related to the field of pressure by
the following expressions, where � is the viscosity of the fluid and
�m the characteristic length of the membrane [2]:

vm(z) = �P(z)
�m

12�
(6a)

vc(z) = −dP1

dz

w2
1

12�
(6b)

3.  Peak broadening

In previous works of the literature it was  always implicit that the
membrane velocity was constant, the problem being the variations
of the channel velocity, and the analyses of the peak broaden-
ing were performed in accordance with this framework. However,
such an analysis would benefit from knowing both velocities all
along the cell when performing experiments in constant or varied
(programming) conditions of flow. The criticism in [3] is based on
the assumption of constant membrane velocity, which is not real-
ized in usual cell geometries. However, an improved interpretation
would be to include these variations and determine the condi-
tions of application of the approximations. Following the method
of Litzen and Wahlund (Eq. (22) in [5]), where the factor � is here
dependent of the non constant membrane velocity, with the sam-
ple velocity averaged over its exponential distribution in the high
retention limit V = (6D/w1)(vc/vm), D being the diffusion coefficient
of the solute, the plate height is:

H̄ = L
w2

1
D

∫ L

0
�(vm) v2

m
vc

dz(∫ L

0
vm
vc

dz
)2

(7)

and using the relation (2) for a channel of constant breadth:

H̄ = L
1
D

∫ L

0
�(vm) v2

m
vc

dz(
ln vc(L)

vc(0)

)2
(8)

Assuming � ≈ 24�3 in the high retention limit, with � = l/w1 where
l is the characteristic length of the exponential distribution of the
sample (l = D/vm), this expression becomes:

H̄ = L
24D2

w3
1

∫ L

0
dz

vcvm(
ln vc(L)

vc(0)

)2
(9)

provided the assumptions are verified over the full length of the
channel. Otherwise, it may  be needed to change the integration
domain. Let us note that, for channels of non constant breadth b(z),
the relation (2) becomes:

vm(z) = −w1

(
dvc

dz
+ 1

b

db

dz
vc

)
(10)

The integral of the denominator takes then the more general
expression

∫ L vm
( qc,in

)

0

vc
dz = w1 ln

qc,out
(11)

where qc,in and qc,out are the flow rates at entrance and exit of the
sample channel respectively.
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. Conclusion

Contrary to chromatography, the two fields of separation and
ransport are not independent in asymmetric Flow Field-Flow frac-
ionation. The normal separation field (or vm) and the longitudinal
eparation and transport field (or vc) are interdependent through
he relation (10) all over the length of the channels. The proposi-
ion in [1] about the possible improvement of separation, which
as not at all the main claim, was very prudent (“might help”),

eing aware that many parameters are determining the resolu-
ion power. Contrary to what is written in [3],  the aim was not in
hose papers to evaluate, discuss and predict the overall efficiency
f asymmetrical Flow-FFF channels. It was to determine the experi-

ental conditions to obtaining constant velocities, hence providing

 better experimental model for comparison with theory. Anyway
eplying to those comments is a good opportunity to position the
odel with respect to previous ones and claim as in [8] that a sound

[
[
[
[
[

 1225 (2012) 193– 195 195

interpretation of the experiments would require the knowledge of
the characteristics of channels and overall of membranes and sup-
ports. In addition, the model can be applied to any simple geometry
and provide the velocity fields all over the length of the channel.
Of course, the model remains a model and contains its own level of
approximations. It has however the advantage to provide analyti-
cal solutions and to go beyond the simple assumption of constant
membrane velocity.
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